FURTHER MATHEMATICS/MATHEMATICS (ELECTIVE)

AIMS OF THE SYLLABUS

The aims of the syllabus are to test candidates'
(i) development of further conceptual and manipulative skills in Mathematics;
(ii) understanding of an intermediate course of study which bridges the gap between Elementary Mathematics and Higher Mathematics;
(iii) acquisition of aspects of Mathematics that can meet the needs of potential Mathematicians, Engineers, Scientists and other professionals.
(iv) ability to analyse data and draw valid conclusion
(v) logical, abstract and precise reasoning skills.

EXAMINATION SCHEME

There will be two papers, Papers 1 and 2, both of which must be taken.
PAPER 1: will consist of forty multiple-choice objective questions, covering the entire syllabus. Candidates will be required to answer all questions in 11 hours for 40 marks. The questions will be drawn from the sections of the syllabus as follows:

Pure Mathematics - 30 questions
Statistics and probability - 4 questions
Vectors and Mechanics - 6 questions
PAPER 2: will consist of two sections, Sections A and B, to be answered in $2 \frac{1}{2}$ hours for 100 marks.

Section A will consist of eight compulsory questions that areelementary in type for 48 marks. The questions shall be distributed as follows:

Pure Mathematics	-	4 questions
Statistics and Probability -	2 questions	
Vectors and Mechanics	-	2 questions

Section B will consist of seven questions of greater length and difficulty put into three parts:Parts I, II and III as follows:

Part I: Pure Mathematics - 3 questions
Part II: Statistics and Probability
Part III: Vectors and Mechanics

Candidates will be required to answer four questions with at least one from each part for 52 marks.

DETAILED SYLLABUS

In addition to the following topics, more challenging questions may be set on topics in the General Mathematics/Mathematics (Core) syllabus.

In the column for CONTENTS, more detailed information on the topics to be tested is given while the limits imposed on the topics are stated under NOTES.

Topics which are marked with asterisks shall be tested in Section B of Paper 2 only.

KEY:

* Topics peculiar to Ghana only.
** Topics peculiar to Nigeria only

Topics	Content	Notes
I. Pure Mathemati		
(1) Sets	(i) Idea of a set defined by a property, Set notations and their meanings.	$\begin{aligned} & (x: x \text { is real }), \cup, \cap,\{ \}, \notin, \in, \\ & \subset, \subseteq \end{aligned}$
	(ii) Disjoint sets, Universal set and complement of set	U (universal set) and A^{\prime} (Complement of set A).
	(iii) Venn diagrams, Use of sets And Venn diagrams to solve problems.	More challenging problems involving union, intersection, the universal set, subset and complement of set.
	(iv) Commutative and Associative laws, Distributive properties over union and intersection.	Three set problems. Use of De Morgan's laws to solve related problems
(2) Surds	Surds of the form $\frac{a}{\sqrt{b}}, a \sqrt{b}$ and $a+b \sqrt{n}$ where a is rational, b is a positive integer and n is not a perfect square.	All the four operations on surds Rationalising the denominator of surds such as $\frac{a}{\sqrt{b}}, \frac{a+\sqrt{b}}{c-\sqrt{d}}$,

	(ii) Quadratic Functions, Equations and Inequalities (ii) Cubic Functions and Equations	Graphical representation of linear inequalities in two variables. Application to Linear Programming. Recognition and sketching graphs of quadratic functions e.g. $f: x \rightarrow a x^{2}+b x+c$, where a, b and $c \in R$. Identification of vertex, axis of symmetry, maximum and minimum, increasing and decreasing parts of a parabola. Include values of x for which $f(x)>0$ or $f(x)<0$. Solution of simultaneous equations: one linear and one quadratic. Method of completing the squares for solving quadratic equations. Express $f(x)=a x^{2}+b x+c$ in the form $f(x)=a(x+d)^{2}+k$, where k is the maximum or minimum value. Roots of quadratic equations - equal roots ($b^{2}-4 a c=0$), real and unequal roots ($b^{2}-4 a c>0$), imaginary roots ($b^{2}-4 a c<0$); sum and product of roots of a quadratic equation e.g. if the roots of the equation $3 x^{2}+5 x$ $+2=0$ are a and β, form the equation whose roots are 1 and $\frac{1}{13}$. Solving quadratic inequalities. Recognition of cubic functions e.g. f: $x \rightarrow a x^{3}+b x^{2}+c x+d$. Drawing graphs of cubic functions for a given range. Factorization of cubic expressions and solution of cubic equations. Factorization of $a^{3} \pm b^{3}$. Basic operations on polynomials, the remainder and factor theorems i.e. the

(9) Permutation And Combinations.		$\begin{aligned} \log (a b)^{x} & =x(\log a+\log b) \\ & =x \log a b \end{aligned}$ *Drawing and interpreting graphs of logarithmic functions e.g. $y=a x^{b}$. Estimating the values of the constants a and b from the graph
	(i) Simple cases of arrangements (ii) Simple cases of selection of objects.	Knowledge of arrangement and selection is expected. The notations: ${ }^{n} C_{r},(\underset{r}{n})$ and ${ }^{n} P_{r}$ for selection and arrangement respectively should be noted and used. e.g. arrangement of students in a row, drawing balls from a box with or without replacements. $\begin{aligned} & { }^{n} \mathrm{p}_{\mathrm{r}}=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r})!} \\ & { }^{n} \mathrm{n}_{\mathrm{r}}=\quad \mathrm{n!} \\ & \mathrm{r!}(\mathrm{n}-\mathrm{r})! \end{aligned}$
(10) Binomial Theorem	Expansion of $(a+b)^{n}$. Use of $(1+x)^{n} \approx 1+n x$ for any rational n, where x is sufficiently small. e.g $(0.998)^{1 / 3}$	Use of the binomial theorem for positive integral index only. Proof of the theorem not required.
(11) Sequences and Series	(i) Finite and Infinite sequences.	e.g. (i) $u_{1}, u_{2}, \ldots, u_{n}$. (ii) u_{1}, u_{2}, \ldots.
	(ii) Linear sequence/Arithmetic Progression (A.P.) and Exponential sequence/Geometric Progression (G.P.)	Recognizing the pattern of a sequence. e.g. (i) $U_{n}=U_{1}+(n-1) d$, where d is the common difference. (ii) $U_{n}=U_{1} r^{n-1}$ where r is the common ratio.
	(iii) Finite and Infinite series. (iv) Linear series (sum of A.P.) and exponential series (sum of G.P.)	(i) $\mathrm{U}_{1}+\mathrm{U}_{2}+\mathrm{U}_{3}+\ldots+\mathrm{U}_{n}$ (ii) $U_{1}+U_{2}+U_{3}+\ldots$. (i) $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}\left(\mathrm{U}_{1}+\mathrm{U}_{\mathrm{n}}\right)$ (ii) $\mathrm{S}_{\mathrm{n}}={ }_{2}^{\mathrm{n}}[2 a+(\mathrm{n}-1) \mathrm{d}]$

(13)Trigonometry	(i) Trigonometric Ratios and Rules	Determining the matrices of given linear transformation. Finding the inverse of a linear transformation (restrict to 2×2 matrices). Finding the composition of linear transformation. Recognizing the Identity transformation. (i) $\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}$ reflection in the $x-\text { axis }$ (ii) $\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}$ reflection in the $y-a x i s$ (iii) $\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}$ reflection in the line $\begin{gathered} 1 \\ y=x \end{gathered}$ (iv) $\cos 0-\sin 0$ for anti- $\sin 0 \quad \cos 0$ clockwise rotation through θ about the origin. (v) $\operatorname{Cos} 20 \quad \sin 20$ $\sin 20-\operatorname{Cos} 20$, the general matrix for reflection in a line through the origin making an angle θ with the positive x-axis. *Finding the equation of the image of a line under a given linear transformation Sine, Cosine and Tangent of general angles ($0^{\circ} \leq \theta \leq 360^{\circ}$). Identify trigonometric ratios of angles $30^{\circ}, 45^{\circ}, 60^{\circ}$ without use of tables. Use basic trigonometric ratios and reciprocals to prove given trigonometric identities. Evaluate sine, cosine and tangent of negative angles. Convert degrees into radians and vice versa. Application to real life situations such as heights and distances, perimeters, solution of triangles, angles of elevation and depression,

(16)Integration	(ii) The derivative of a function (iii)Differentiation of polynomials (iv) Differentiation of trigonometric Functions (v) Product and quotient rules. Differentiation of implicit functions such as $a x^{2}+b y^{2}=c$ **(vi) Differentiation of Transcendental Functions (vii) Second order derivatives and Rates of change and small changes ($\Delta \mathrm{x}$), Concept of Maxima and Minima (i) Indefinite Integral	Relate to the gradient of a curve. e.g. $f^{1}(x)=$ $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ (ii) Its meaning and its determination from first principles (simple cases only). $\text { e.g. } \mathrm{ax} \mathrm{n}^{\mathrm{n}} \mathrm{~b}, \mathrm{n} \leq 3,(\mathrm{n} \in I)$ e.g. $a x^{m}-b x^{m-1}+\ldots+k$, where $\mathrm{m} \in I, \mathrm{k}$ is a constant. e.g. $\sin x, y=a \sin x \pm b \cos$ x . Where a, b are constants. including polynomials of the form $\left(a+b x^{n}\right)^{m}$. e.g. $y=e^{a x}, y=\log 3 x$, $y=\ln x$ (i) The equation of a tangent to a curve at a point. (ii) Restrict turning points to maxima and minima. (iii)Include curve sketching (up to cubic functions) and linear kinematics. (i) Integration of polynomials of the form $a_{n+1}^{n} ; n \neq-1$. i.e. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c, n \neq-1$. (ii) Integration of sum and difference of polynomials. e.g. $\int\left(4 x^{3}+3 x^{2}-6 x+5\right) d x$ *(iii)Integration of polynomials of the form $\mathrm{ax}^{\mathrm{n}} ; \mathrm{n}=-1$.

		i.e. $\int x^{-1} d x=\ln x$
	(ii) Definite Integral	
	(iii) Applications of the Definite Integral	Simple problems on integration by substitution. Integration of simple trigonometric functions of the form $\mathrm{J}_{\mathrm{a}}^{\mathrm{b}} \sin \mathrm{x} \mathrm{dx}$.
		(i) Plane areas and Rate of Change. Include linear kinematics. Relate to the area under a curve.
II. Statistics and Probability		(ii)Volume of solid of revolution (iii) Approximation restricted to trapezium rule.
(17)Statistics	(i) Tabulation and Graphical representation of data	
	(ii) Measures of location	Frequency tables. Cumulative frequency tables. Histogram (including unequal class intervals). Cumulative frequency curve (Ogive) for grouped data.
	(iii) Measures of Dispersion	Central tendency: mean, median, mode, quartiles and percentiles. Mode and modal group for grouped data from a histogram. Median from grouped data. Mean for grouped data (use of an assumed mean required).
		Determination of: (i) Range, Inter- Quartile and Semi inter-quartile range from an Ogive.
		(ii) Mean deviation, variance and standard deviation for grouped and ungrouped

(18)Probability	(iv)Correlation (i) Meaning of probability.	data. Using an assumed mean or true mean. Scatter diagrams, use of line of best fit to predict one variable from another, meaning of correlation; positive, negative and zero correlations,. Spearman's Rank coefficient. Use data without ties. *Equation of line of best fit by least square method. (Line of regression of y on x).
	(ii) Relative frequency. (iii) Calculation of Probability using simple sample spaces. (iv) Addition and multiplication of probabilities. (v) Probability distributions.	Tossing 2 dice once; drawing from a box with or without replacement. Equally likely events, mutually exclusive, independent and conditional events. Include the probability of an event considered as the probability of a set.
III. Vectors and Mechanics		(i) Binomial distribution $P(x=r)={ }^{n} C_{r} p^{r} q^{n-r}$, where Probability of success $=p$, Probability of failure $=q$, $p+q=1$ and n is the number of trials. Simple problems only. (ii) Poisson distribution $P(x)=\frac{e^{-1 . x^{x}}}{x!} \text {, where } \lambda=n p \text {, }$ n is large and p is small.
(19)Vectors	(i) Definitions of scalar and vector Quantities. (ii) Representation of Vectors.	

1. UNITS

Candidates should be familiar with the following units and their symbols.

(1) Length

1000 millimetres $(\mathrm{mm})=100$ centimetres $(\mathrm{cm})=1$ metre (m).
1000 metres $=1$ kilometre (km)

(2) Area

10,000 square metres $\left(m^{2}\right)=1$ hectare (ha)

(3) Capacity

1000 cubic centimeters $\left(\mathrm{cm}^{3}\right)=1$ litre (I)

(4) Mass

1000 milligrammes $(\mathrm{mg})=1$ gramme (g)
1000 grammes $(\mathrm{g})=1$ kilogramme (kg)
1000 ogrammes $(\mathrm{kg})=1$ tonne.

(5) Currencies

The Gambia	-	100 bututs (b) = 1 Dalasi (D)
Ghana	-	100 Ghana pesewas (Gp) = 1 Ghana Cedi (GH\$)
Liberia	-	100 cents $(\mathrm{c})=1$ Liberian Dollar (LD)
Nigeria	-	100 kobo $(\mathrm{k})=1$ Naira (A$)$
Sierra Leone	-	100 cents $(\mathrm{c})=1$ Leone $($ Le $)$
UK	-	100 pence $(\mathrm{p})=1$ pound $(£)$
USA	-	100 cents $(\mathrm{c})=1$ dollar $(\$)$
ch Speaking territories	100 centimes $(\mathrm{c})=1$ Franc (fr)	
other units used will be defined.		

2. OTHER IMPORTANT INFORMAIION

(1) Use of Mathematical and Statistical Tables

Mathematics and Statistical tables, published or approved by WAEC may be used in the examination room. Where the degree of accuracy is not specified in a question, the degree of accuracy expected will be that obtainable from the mathematical tables.

(2) Use of calculators

The use of non-programmable, silent and cordless calculators is allowed. The calculators must, however not have a paper print out nor be capable of receiving/sending any information. Phones with or without calculators are not allowed.

(3) Other Materials Required for the examination

Candidates should bring rulers, pairs of compasses, protractors, set squares etc required for papers of the subject. They will not be allowed to borrow such instruments and any other material from other candidates in the examination hall.
Graph papers ruled in 2 mm squares will be provided for any paper in which it is required.

(4) Disclaimer

In spite of the provisions made in paragraphs 2 (1) and (2) above, it should be noted that some questions may prohibit the use of tables and/or calculators.

